WASTEWATER PURIFICATION ENHANCED BY ELECTROCHEMISTRY

Richard J. Coin, Eltech Research Corporation Marilyn J. Niksa, Electrode Corporation David I. Elyanow, Ionics Incorporated

> Presented at the AIChE 1995 Summer National Meeting

Evaporator & Electrolyzer Feed

ppm

Component
SO_4
free H_2SO_4
Al
NH ₄
Fe _{total}
Fe^{+3}

Evap 49,500 14,800 6,000 1,060 1,040 total NA

Elect 166,300 1,830 20,800 14,930 3,765 1,285

Main Objective: Reduce Fe⁺³ from 1285 to 285 ppm

$Fe^{+3} + 1e^{-} = Fe^{+2}$

Anticipated Reactions

Anode: $H_2O = 2H^+ + 2e^- + 1/2O_2$

Cathode: $2 Fe^{+3} + 2 e^{-} = 2 Fe^{+2}$ (desired)

 $2 H_2O + 2 e^- = 2 OH^- + H_2$ (ineffic.)

Limiting Current Density

- $I_{\text{limiting}} = zFDAC_{b}/\acute{0}$ Where:
- I_{limiting} = limiting current density
- z = number of electrons per equivalent, 1
- $F = Faradays constant, 9.65 x 10^4 amp seconds$
- D = Diffusion Coef, $\sim 2x10^{-6}$ cm/sec Fe⁺³
- A = Electrode Area, basis 1 sq cm
- $C_b = Fe^{+3}$ concentration, moles/cc
- $\dot{o} = diffusion layer thickness, ~1x10^{-3} cm$

Current Density Selection

Desired CD 35 ASF (37.7 mA/sq cm)

- 1285 to ~750 ppm Fe⁺³
- limiting CD \sim 3 mA/sq cm
- Actual/Projected Area ~12.6
- ~95% Current Efficiency

Desired CD 20 ASF (21.5 mA/sq cm)

- $-\sim$ 750 to 285 ppm Fe⁺³
- limiting CD \sim 1 mA/sq cm
- Actual/Projected Area ~21.5
- ~80% Current Efficiency

Conceptual Flow Diagram

Bench Test System

Cathode Materials Tested

- Nickel
- Tin/Nickel Corroded
- Silver/Nickel

- Corroded
- - Corroded
- Graphite Sheet Low Current Efficiency
- Retic. Graphite Low Current Efficiency
 - High Voltage
- Graphite Felt Low Current Efficiency
 - High Voltage

DSA Coated Ti - High Current Efficiency

Bench Efficiency vs Fe+3 4 and 8 Layer Demister

Actual/Projected AreaCurrent Efficiency % 21.7 84.3 21.7 86.4 70.1 16.3 13.9 65.0 11.7 62.7 63.0 10.8

Commercial Electrolyzer

