US Surface Water Treatment Rules (SWTR) for Drinking Water

Spartan Environmental Technologies, LLC

SAFE DRINKING WATER ACT (SDWA) 1974

- Authorizes EPA to set national standards
- Initially regulated quality at the tap
- 1996 amendment expanded to
 - source water
 - operator training
 - □funding for improvements
 - □public information

SURFACE WATER TREATMENT RULE (SWTR) -1989

- Protect against Giardia lamblia, virus, Legionella
- Inactivate 99.9% of Giardia and 99.99% of Virus
- Maintain disinfection residuals
- Filtration required unless avoidance criteria met
- Turbidity limits of 5 and 0.5 (95%) NTU
- Watershed control programs
- Water quality requirements unfiltered systems

STAGE 1 DISINFECTANTS & DISINFECTION BYPRODUCTS RULE (DBPR) - 1998

- Interrelate microbial pathogens & DBP
 M-DBP microbial/disinfection byproducts rules
- Enforce concurrent with IESWTR (next slide)
- Systems serving 10,000 or more
 - □ Surface water comply by January 2002
 - □ All other sources comply by January 2004
- Maximum contaminant levels MCL
 - total trihalomethanes, haloacetic acids, bromate & chlorite
- Maximum residual disinfectant residuals MRDL
 - chlorine, chloramines, chlorine dioxide

INTERIM ENHANCED SURFACE WATER TRATMENT RULE - (IESWTR) - 1998

- At least 10,000 people, surface water
- Remove 99% of Cryptosporidium
- 1 NTU Turbidity max, 0.3 NTU (95%)
- Continuous monitoring of Turbidity
- Benchmark microbial protection before meeting Stage 1 DBPR
- Comply by January 2002

LONG TERM 1 ENHANCED SURFACE WATER TREATMENT RULE (LT1ESWTR) - 2002

Extended IESWTR to <10,000 people
Enforcement beginning 2002

STAGE 2 DISINFECTANT AND DISINFECTION BYPRODUCT RULE (Stage 2 DBPR) -

- Phased along with LT2ESWTR
- Change monitoring to reduce DBP peaks
 - Location Running Annual Average LRAA instead of system-wide RAA
- Initial Distribution System Evaluation (IDSE)
 - Identify high TTHM and HAA5 monitoring locations
 - Standard Monitoring (SMP) or System-specific (SSS)
- Two phases 2A and 2B

STAGE 2 DISINFECTANT AND DISINFECTION BYPRODUCT RULE (Stage 2 DBPR) - Cont'd

Stage 2A

- TTHM/HAA5 MCLs of 120/100 micrograms/L
 - LRAA at each Stage 1 DBPR monitoring site
 - Continue to comply with 80/60 micrograms/L at RAAs

Stage 2B

TTHM/HAA5 MCLs of 80/60 micrograms/L
 Locations identified under IDSE

Significant Excursion Evaluation

LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE (LT2ESWTR) - Proposed Draft 2003

- Requirements based on Cryptosporidium (or Ecoli) occurrence in source water
- Systems classified into four bins that indicate treatment requirements
- Select from a "toolbox" of options
- Details in "Long Term 2 Enhanced Surface Water Treatment Rule Toolbox Guidance Manual"

LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE (LT2ESWTR) - Cont'd

		And if you use the following filtration treatment in full compliance with existing regulations, then your additional treatment requirements are						
If your Cryptosporidium Your bin concentration classification (oocysts/L) is is		Conventional Filtration Treatment (includes softening)	Direct Filtration	Slow Sand or Diatomaceous Earth Filtration	Alternative Filtration Technologies			
< 0.075	1	No additional treatment	No additional treatment	No additional treatment	No additional treatment			
≥ 0.075 and < 1.0	. 2	1 log treatment ²	1.5 log treatment ²	1 log treatment ²	As determined by the State ^{2,4}			
≥ 1.0 and < 3.0	3	2 log treatment ³	2.5 log treatment ³	2 log treatment ³	As determined by the State ^{3,5}			
≥ 3.0	4	2.5 log treatment ³	3 log treatment ³	2.5 log treatment ³	As determined by the State ^{3,6}			

1 (40 CFR 141.709 and 40 CFR 141.720)

² Systems may use any technology or combination of technologies from the microbial toolbox.

³ Systems must achieve at least 1 log of the required treatment using ozone, chlorine dioxide, UV, membranes, bag/cartridge filters, or bank filtration.

⁴ Total Cryptosporidium treatment must be at least 4.0 log.

5 Total Cryptosporidium treatment must be at least 5.0 log.

⁶ Total Cryptosporidium treatment must be at least 5.5 log.

LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE (LT2ESWTR) - Cont'd

- SWTR use concentration and time (CT) methods to predict inactivation efficiencies
- Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources

□ App. O Guidelines to Evaluate Ozone Disinfection

 Long Term 2 Enhanced Surface Water Treatment Rule Toolbox Guidance Manual

□ App. B Ozone CT Methods

CT Methods for Log Inactivation

- T₁₀ Calculates CT assuming plug flow with tracer study
 T₁₀ time for 90% of water to pass through the contactor
 T₁₀ often less than 65% of Hydraulic Detention Time (HDT)
- CSTR Calculates log inactivation using HDT
 for significant back mixing or no tracer studies
- Extended CSTR Calculates log inactivation using HDT
 - □ incorporates ozone decay rate
 - not applicable to chambers where ozone introduced
- Under Consideration
 - SFA (Segmented Flow Analysis), Log Integration and Geometric Mean

- Calculate Log Inactivation Credit for Cryptosporidium for the following System:
 - Four chamber contactor with ozone injection in chamber 1, 2 & 3.
 - □ Chambers each have a volume of 1,000 gals.
 - Chambers 1 & 3 have counter-current flow while Chamber 2 has co-current flow. Chamber 4 has reactive flow.
- Example taken from Chapter 11 LT2ESWTR Toolbox

T10 EXAMPLE - BLOCK DIAGRAM

System Description Continued:

 Water temperature is 5 degrees C
 T₁₀ for all chambers based on tracer study was 24 minutes
 Ozone residual from Chamber 1 = 1.2 mg/l
 Ozone residual from Chamber 2 = 0.8 mg/l
 Ozone residual from Chamber 3 = 0.9 mg/l
 Ozone residual from Chamber 4 = 0.0 mg/l

- Step 1 is to determine concentration in each chamber – USEPA does not recommend credit for chamber 1 therefore:
 - \Box Chamber 2 C =(C_{in} + C_{out})/2 =(1.2 + 0.8)/2 = 1 mg/l
 - \Box Chamber 3 C = C_{out}/2 = 0.9/2 = 0.45 mg/l
 - \Box Chamber 4 C = C_{out} = 0.0 mg/l

- Step 2 is to Calculate T for each Chamber by dividing T₁₀ proportionally among the four chambers.
 - $\Box T_{10}$ for each Chamber = $T_{10}(V_{1-4}/V_T)$
 - □ T_{10} for each Chamber = 24 minutes (1000 gal/4000 gals) = 6 minutes

Step 3 is to Calculate CT for Each Chamber

□ Chamber 1 (not calculated)

Chamber 2 CT = 1 mg/l * 6 min = 6 mg-min/l

□ Chamber 3 CT = 0.45mg/l * 6 min = 2.7 mg-min/l

Chamber 4 CT = 0.0 mg/l * 6 min = 0.0 mg-min/l

Step 4 Identify the CT_{table} for the log inactivation credit desired for each chamber. Calculate the ratio of CT_{calc} to CT_{table}, and sum the ratios to get a total log inactivation ratio.

	CT Calculated	CT for 0.5 Log	Ratio of
		Inactivation	CT Calc/CT Table
Chamber 2	6 mg-min/l	7.9	0.76
Chamber 3	2.7 mg-min/l	7.9	0.34
Chamber 4	0.0 mg-min/l	7.9	0.00
		Total Ratio	1.10

CT TABLE

Table 11.1 CT Values for Cryptosporidium Inactivation by Ozone (40 CFR 141.730)

Log credit	Water Temperature, ^D C ¹										
	<=0.5	1	2	3	5	7	10	15	20	25	
0.5	12	12	10	9.5	7.9	6.5	4.9	3.1	2.0	1.2	
1.0	24	23	21	19	16	13	9.9	6.2	3.9	2.5	
1.5	36	35	31	29	24	20	15	9.3	5.9	3.7	
2.0	48	46	42	38	32	26	20	12	7.8	4.9	
2.5	60	58	52	48	40	33	25	16	9.8	6.2	
3.0	72	69	63	57	47	39	30	19	12	7.4	

¹CT values between the indicated temperatures may be determined by interpolation.

- Step 5 Determine if Ratio of CT Calculated to CT Table is Equal to One or Greater
 The CT ratio = 1.1
 - □ Therefore the process receives a 0.5 log credit for inactivation of Cryptosporidium.

- Calculate Log Inactivation Credit for Cryptosporidium for the following System:
 - Four chamber contactor with ozone injection in chamber 1 & 2. Chambers each have a volume of 1,000 gals.
 - □ Chambers 1 & 2 have counter current flow while Chambers 3 & 4 have reactive flow.
- Example taken from Chapter 11 LT2ESWTR Toolbox

CSTR EXAMPLE - BLOCK DIAGRAM

System Description Continued:
 Water temperature is 10 degrees C
 HDT (Hydraulic Detention Time) for all chambers is 20 minutes
 Ozone residual from Chamber 1 = 0.3 mg/l
 Ozone residual from Chamber 2 = 0.3 mg/l

 System Description Continued:
 Ozone residual from Chamber 3 not measured, but assumed to equal measured value from Chamber 4

 \Box Ozone residual from Chamber 4 = 0.1 mg/l

- Step 1 Determine C Values for Each Chamber:
 - Chamber 1 No inactivation credit recommended
 - \Box Chamber 2 C = C2_{out}/2 = 0.3 / 2 = 0.15 mg/L
 - \Box Chamber 3 C = C_{out} = 0.1 mg/L
 - \Box Chamber 4 C = C4_{out} = 0.1 mg/L

- Step 2 Calculate the Log Inactivation for each Chamber
 - □ Inactivation credit = Log (1 + $2.303k_{10} \times C \times HDT$)
 - □ $k_{10} = 0.0397 \text{ x} (1.09757)^T$ based on tabular data from US EPA. K_{10} is the inactivation coefficient and T is the temperature.

	Water Temperature, ⁰ C										
	<=0.5	1	2	3	5	7	10	15	20	25	
k ₁₀	0.0417	0.0430	0.0482	0.0524	0.0629	0.0764	0.101	0.161	0.254	0.407	

Calculations:

- Chamber 1 no credit by rule
- Chamber 2 Log inactivation = Log(1 + 2.303×0.1005×0.15×20) = 0.23
- Chamber 3 Log inactivation = Log(1 + 2.303×0.1005×0.1×20) = 0.17
- Chamber 4 Log inactivation = Log(1 + 2.303×0.1005×0.1×20) = 0.17

- Step 3 Sum the log inactivations to determine the log credit achieved:
 - The total log-inactivation across the contactor is 0.23 + 0.17 + 0.17 = 0.57 log inactivation, therefore 0.5 log credit achieved.

Description of System:

- 12 chamber over and under contactor
- □ Each Chamber is 104,000 gals
- □ Total flow is 50 MGD
- Water Temperature is 20 degrees C
- Ozone added only to chamber 1
- Residual measurements at outlet of chambers 2, 5 &
 8
- Example taken from Appendix B LT2ESWTR Toolbox

EXTENDED CSTR - BLOCK FLOW DIAGRAM

HDT, min

Methods

- No Credit is given cryptosporidium inactivation in chamber 1
- Chambers 2-12 evaluated using Extended CSTR model

Example Calculation for Extended CSTR Method WHERE DOES 104,000 COME FROM?

- Step 1 calculate k*, the ozone decay rate:
- $k_{1-2}^* = (N_{1-2} \times Q/V_{1-2}) \times ((C1/C2)^{(1/N1-2)}-1)$
- $k_{1-2}^* = (3 \times 34,720/(3 \times 104,000)) \times ((0.71/0.41)^{1/3} 1) = 0.067 \text{ min}^{-1}$
- k*₁₋₃ = (6 x 34,720/(6 x 104,000)) x ((0.71/0.2)^{1/6} − 1) = 0.0785 min⁻¹
- N = Number of Chambers, V = Volume, Q=Flow Rate & C = Ozone residual concentration

Calculate k*

- $\Box k^* = (k^*_{1-2} + k^*_{1-3})/2$
- $\Box k^* = (0.067 + 0.0785)/2 = 0.0728 \text{ min}^{-1}$
- k* must be in a maximum range of variability of 20%, in this example it is within a range of 8%

Calculate $C_{initial}$ $C_{initial,1} = C_1 \times (1 + k^* \times V_{0-1}/N_{0-1}/Q)^{N0-1}$ $C_{inital,1} = 0.71 \times (1 + 0.728 \times 104,000/1/34,720)^1 = 0.865 \text{ mg/l}$ $C_{initial,2} = 0.41 \times (1 + 0.728 \times (4 \times 104,000) / 4 / 34,720)^4 = 0.902 \text{ mg/l}$

Calculate C_{initial} Continued
 C_{initial,3} = 0.20 x (1 + 0.728 x (7 X 104,000) / 7 / 34,720)⁷ = 0.796 mg/l
 C_{initial} = (C_{inital,1} + C_{inital,2} + C_{initial,3})/3
 C_{initial} = (0.865 + 0.902 + 0.796) / 3 = 0.854 mg/l

Step 3 Calculate the Inactivation constant k₁₀ at 20 degrees C:

This number can be taken from Tables supplied by the US EPA

	Water Temperature, ⁰ C										
	<=0.5	1	2	3	5	7	10	15	20	25	
k ₁₀	0.0417	0.0430	0.0482	0.0524	0.0629	0.0764	0.101	0.161	0.254	0.407	

- k₁₀ = 0.0397 x (1.09757)^T
- K₁₀ = 0.0397 x (1.09757)²⁰ = 0.255

Step 4 Calculate the Ozone Residual at the Effluent of Each Chamber:

 $\Box C_X = C_{initial} / (1 + k^* x V_{0-X} / N_{0-X} / Q)^{N0-X}$

- In this the extended CSTR region begins with the effluent of Chamber 1, so for C₄ the subscripts for V and N would be 1-4.
- $\Box C_4 = .854/(1 + 0.0728 \times 3 \times 104,000 / 3 / 34,720)^3 = 0.473 \text{ mg/l}$
- This procedure is continued for all chambers except chamber 1.

- Step 5 Calculate Log Inactivation of Each Chamber:
 - $\Box \text{ Log Inactivation} = \text{Log } (1 + 2.303 \text{ x } \text{k}_{10} \text{ x } \text{C}_{\text{X}} \text{ x } \text{V}_{\text{X}} / \text{Q})$
 - □ = Log (1 + 2.303 x 0.246 x 0.473 x 104,000 /34,720) = 0.26 Logs
 - The sum of the log inactivation values for all chambers is the log inactivation of the entire contactor
 - □ In this case 1.9 Logs